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THE CONTROL OF A NUCLEAR REACTOR USING HELIUM- 3 

GAS CONTROL EI;EMENTS 

by H. W. Davison, C. A. Heath, and W. Lowen 

Lewis Research Center 
National Aeronautics and Space Administration 

Cleveland, Ohio 

Present  day nuc lear  r eac to r s  generally employ neutron absorbing rods 
f o r  r e a c t o r  control .  Reac t iv i ty  i s  adjusted by pos i t ion ing  these  rods i n  
t h e  reactor .  The presence of control  rods i n  the r eac to r  core c a r r i e s  cer- 
t a i n  pena l t ies .  Not only do they generally r equ i r e  e labora te  pos i t ion ing  

(D devices ,  but  l o c a l  neutron f lux  and power per turba t ions  can be very severe. 

w I n  conventional power p lan ts ,  these pena l t i e s  have not  been s u f f i c i e n t  

cn 
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I 

t o  f o r b i d  t h e  use of cont ro l  rods. However, new requirements imposed by space 
systems necess i t a t e  a reevaluat ion of cont ro l  techniques. Not only are w e  
i n t e r e s t e d  i n  low weights, but  high performance and high e f f i c i ency  space 
power systems r equ i r e  c lose  a t t en t ion  t o  power p ro f i l e s .  Any technique which 
permits minimum perturbat ion of power d i s t r i b u t i o n  o f f e r s  a real advantage i n  
high performance cores. 

The concept t h a t  w i l l  be presented i s  a con t ro l  system f o r  a water- 
moderated r eac to r  t h a t  uses a neutron absorbing gas, helium-3. It should be  
mentioned at t h i s  po in t  t h a t ,  while we s p e c i f i c a l l y  refer  t o  a water system 
here,  any r eac to r  system which could provide cooling might a l s o  be able t o  
use t h i s  concept. H e l i u m - 3  i s  chemically i n e r t ,  has a thermal neutron ab- 
so rp t ion  cross  sec t ion  of about 5000 barns and i s  ava i l ab le  today f o r  about 
$100/ l i te r  a t  STP. 

The helium-3 would be contained i n  a number of metal containers  evenly 
d i s t r i b u t e d  through t h e  core. Reactivity cont ro l  is  accomplished by ad jus t -  
ing  t h e  pressure of t h e  s t a t i c  gas i n  t hese  containers .  

Figure 1 i s  a schematic of a water-moderated rocket r e a c t o r  concept. 
The hydrogen propel lan t ,  s to red  i n  l i qu id  form, i s  first used t o  cool  t h e  
nozzle walls and then cools  t h e  moderator i n  heat  exchangers loca t ed  i n  
t h e  per iphera l  region of t h e  reac tor  core. 
machinery, not  shown, t h e  propel lant  is  heated i n  t h e  r e a c t o r  core  and i s  
exhausted through t h e  nozzle. The water moderator c i r c u l a t e s  i n  a closed 
c i r c u i t  through t h e  core and hea t  exchangers. The hea t  exchangers remove 
hea t  generated i n  t h e  water due t o  neutron hea t ing  and hea t  t r a n s f e r r e d  t o  
t h e  water from t h e  s t ruc tu re .  

After passing through turbo- 

The cont ro l  system containers  o r  con t ro l  elements would be  placed i n  
t h e  core as i l l u s t r a t e d  i n  Figure 2. The a c t u a l  con t ro l  elements are 
aluminum annul i  running t h e  axial  length of the core. I n  t h i s  diagram, w e  
have shown a f u e l  element array on a t r i a n g u l a r  p i t c h  with con t ro l  elements 
i n  t h e  i n t e r s t i t i a l  posi t ions.  A l s o  shown i s  a d i s t r i b u t i o n  system connect- 
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ing t h e  individual  gas containers. 
sec t ion ,  about -$ inch wide and l$ inches high. 
t i o n  i s  necessary t o  Provide t h e  required volume i n  t h i s  plenum. 
e labora te  f u r t h e r  on t h i s  l a t e r .  

This system i s  rectangular  i n  cross 
This pa r t i cu la r  cross  sec- 

W e  s h a l l  

Looking a t  the  plan view of t h e  reac tor  core (Fig. 3) we see the  d i s -  
t r i b u t i o n  system among t h e  f u e l  array. 
each of t he  "corners" of t h e  d i s t r ibu t ion  system. 
are i l l u s t r a t e d  here. 
or connected with the  valve shown. 
a s i n g l e  c i r c u i t  could cont ro l  t he  reactor.  

The annular control  elements are at  
Two independent c i r c u i t s  

These two c i r c u i t s  could be operated independently 
Under emergency conditions, f o r  instance,  

Figure 4 i l l u s t r a t e s  t h e  two control c i r c u i t s  (designated by primed and 
unprimed numbers) superimposed on the reac tor  schematic. The tanks labe led  
"1" contain t h e  helium supply. The opening of valves 2 and 4 introduce gas 
i n t o  t h e  system t o  i n s e r t  control  gas and reduce r eac t iv i ty .  React ivi ty  is  
increased by venting through valve 3 with valve 2 closed. The o r i f i c e  at  
loca t ion  9 is  required t o  r e s t r i c t  the rate of r e a c t i v i t y  increase during 
gas venting, or i n  t h e  case of piping f a i l u r e ,  around t h e  supply tank. By 
t h e  same token, gas in se r t ion  would be r e s t r i c t e d  by t h i s  o r i f i c e ,  so  an 
aux i l i a ry  one-shot scram tank is included a t  6. This tank could be r e f i l l e d  
from t h e  main high pressure reservoirs  f o r  subsequent scrams. 

I n  order t o  study t h e  f e a s i b i l i t y  of t h i s  gas control  concept, c e r t a i n  
c r i t e r i a  were s e t  which we f e l t  such a system should sa t i s fy .  
a r e  l i s t e d  i n  Figures 5 (a )  and (b) .  
worth of gas t o  be held i n  t h e  core under ce r t a in  spec i f ied  conditions. These 
c r i t e r i a  as well as those f o r  addition and removal r a t e s  have been a r b i t r a r i l y  
set but  a r e  considered reasonable. The environmental requirements are charac- 
t e r i s t i c  of a water-moderated propulsion reac tor  f o r  space operations. 

These c r i t e r i a  
Under r e a c t i v i t y ,  we have l i s t e d  the  

Spec i f i c  addi t iona l  requirements f o r  t h i s  cont ro l  system a r e  s a t i s f a c t o r y  
containment and steady state operation. Furthermore, an overa l l  negative 
power coe f f i c i en t  of r e a c t i v i t y  should be b u i l t  i n t o  t h e  system. 

Two s p e c i f i c  design fea tures  permit adequate containment i n  a space 
r eac to r  system: 

(1) Flow r e s t r i c t i o n  o r i f i c e s  can be placed i n  the  d i s t r ibu t ion  l i n e ,  
as indicated i n  Figures 3 and 4, such t h a t  a l l  of t h e  gas i n  t h e  control  ele- 
ments must pass through an o r i f i c e  before leaving t h e  core. 

This device w i l l  apply t o  any accidental  s i t u a t i o n  which involves fa i l -  
ure  outs ide t h e  core. 
ab le  l i m i t s  with gas system pressure exhausting t o  vacuum. This o r i f i c e  s i z e  
( i n  our case, 0.018") requires  the  addition of t h e  one-shot scram tanks ( i tem 
6 i n  Fig. 4 ) .  
through t h i s  o r i f i c e  would be about 12,000 psi .  Therefore, a scram i s  i n i -  
t i a t e d  through valve 5. 
could be i s o l a t e d  from t h e  core and recharged from tanks (1). 

The l o s s  r a t e  through the o r i f i c e  i s  held below accept- 

The required pressure of tank 1 t o  force  $10/sec worth of gas 

After successful r eac to r  shutdown, t h i s  tank ( 6 )  
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( 2 )  The second design f ea tu re  involves maintaining t h e  gas pressure  
i n  t h e  cont ro l  system below t h e  moderator pressure. 

This water seal w i l l  prevent rapid loss of helium i n t o  t h e  moderator 
system. On t h e  o the r  hand, flooding of t he  cont ro l  system w i l l  be impeded 
because the  water w i l l  compress t h e  gas i n  a given system aga ins t  t h e  closed 
valves. 

The second major design requirement i s  s a t i s f a c t o r y  steady s t a t e  oper- 
a t ion .  
con t ro l  gas due t o  the  neutron absorption reaction. Recoil protons and 
t r i t o n s  t r a n s f e r  t h e i r  energy t o  t h e  gas within very s h o r t  distances,  and 
s ince  helium-3 is a poor conductor of hea t ,  l a r g e  temperature g rad ien t s  
might d r ive  cont ro l  mater ia l  away f rom t h e  most important region of t h e  core. 

The main problem i s  presented by i n t e r n a l  heat generation i n  t h e  

The so lu t ion  t o  t h i s  problem l i e s  within t h e  design of t h e  con t ro l  e l e -  
ment. Under operating conditions, the r e c o i l  proton has a range of about 
2 cm i n  helium-3, t h e  t r i t o n  about 1/4 cm. 
signed such t h a t  t h e  l a r g e s t  portion of t h e  r e c o i l  energy i s  absorbed i n  t h e  
aluminum walls of t h e  element as opposed t o  t h e  helium gas. The aluminum 
w a l l s  of t h e  con t ro l  element, with t h e i r  high thermal conductivity a r e  much 
more e a s i l y  cooled with t h e  moderator water flowing around them. 

The cont ro l  element can be de- 

I n  Figure 2, t h e  mean free path within t h e  gas i s  r e s t r i c t e d  by t h e  
narrow annulus width of 0.037 inch. Another poss ib le  configuration is  shown 
i n  Figure 6. Here we have l a r g e  hexagonal con t ro l  elements which completely 
surround t h e  f u e l  elements. The "Y" shaped aluminum s t r u c t u r e s  which are 
a t tached  t o  t h e  cont ro l  element walls are t h e  r e c o i l  p a r t i c l e  t r aps .  I n  t h i s  
configuration, t h e  d i s t r i b u t i o n  system i s  an i n t e g r a l  p a r t  of t h e  construc- 
t i o n ,  so construction problems associated with t h e  previous d i s t r i b u t i o n  
systems may be bypassed. 

An ana lys i s  has t o  be made of possible nuclear-thermal coupling within 
t h e  gas system. Even though t h e  gas temperature grad ien ts  a r e  low, gas move- 
ment away from high f l u x  regions might promote higher f l u x  i n  those  regions. 
A s teady  s t a t e  i t e r a t i v e  ana lys i s  was performed coupling Sn t r anspor t  
theory and hea t  t r a n s f e r  ca lcu la t ions  f o r  t h e  cont ro l  element. 

The ana lys i s  involved t h e  usua l  "modified-cosine" axial f l u x  p r o f i l e  
It w a s  found (shown i n  Fig. 7 )  assoc ia ted  with a forward r e f l e c t e d  core.  

t h a t ,  even with gas r e d i s t r i b u t i o n  calculated, t h e  axial f l u x  p r o f i l e  i s  
p r a c t i c a l l y  iden t i ca l .  
f lux shape i s  shown i n  Figure 8. The r e a c t i v i t y  worth of a cont ro l  element 
having a va r i ab le  helium-3 dens i ty  as shown i n  Figure 8 i s  about one cent 
l e s s  than t h e  r e a c t i v i t y  worth of a constant dens i ty  absorber having t h e  
same mass of helium-3. 

The gas density p r o f i l e  within t h e  gas due t o  t h i s  

A negative power coe f f i c i en t  of r e a c t i v i t y  i s  provided i n  t h e  system 
by t h e  r e l a t i v e  width of t h e  gas passage i n  t h e  d i s t r i b u t i o n  header compared 
t o  t h e  width or thickness of t h e  gas passage i n  t h e  cont ro l  element. As re -  
a c t o r  power i s  increased, t h e  gas temperature i n  t h e  d i s t r i b u t i o n  header w i l l  
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increase  more than t h a t  i n  t h e  control element i f  t h e  hea t  removal path is  
g r e a t e r  i n  the  d i s t r i b u t i o n  header. 
d i s t r i b u t i o n  header causes displacement of neutron absorber from t h e  d i s t r i -  
but ion header i n t o  t h e  control  element and subsequent reduction i n  r eac t iv i ty .  

The g r e a t e r  temperature r ise i n  t h e  

A study was a l s o  performed of the l o c a l  nuclear  e f f e c t s  of t h i s  system 
A ca lcu la t ion  

- e  

as minimum power per turbat ion o f fe r s  an important advantage. 
of r a d i a l  per turbat ions due t o  a control annulus were made with t h e  so-cal led 
" reverse-ce l l . "  
element i s  taken as a c e l l  center l ine and adjoining f u e l  cyl inders  a r e  smeared 
i n t o  an outer  "drive-region" f o r  t he  calculat ion.  

I n  t h i s  type of calculat ion t h e  cen te r l ine  of t h e  cont ro l  

Figure 9 shows t h e  r e s u l t s  of t h i s  calculat ion.  The "with-poison" case 
represents  t h e  annulus containing about 0.37X10-3 grams/cm3 of helium-3 
which represents  a t y p i c a l  h o t - c r i t i c a l  configurat ion f o r  t h e  rocket reac tor .  
The thermal f l u x  i s  seen t o  be perturbed i n  t h e  moderator region surrounding 
t h e  con t ro l  element, but  t h e  power p ro f i l e  i n  t h e  f u e l  region remains con- 
s t a n t .  
a m a x i m u m  configurat ion d i f fe rence ,  not j u s t  s m a l l  changes an t i c ipa t ed  during 
operat  ion. 

Note t h a t  a comparison o f  no gas t o  operating conditions represents  

A po ten t i a l ly  more per turbing component i s  t h e  rectangular  cross-sect ioned 
d i s t r i b u t i o n  header. 
turbed, it i s  necessary t h a t  the  gross axial d i s t r i b u t i o n  a l s o  be undistrubed. 
A two dimensional R-Z t r anspor t  ca lcu la t ion  w a s  performed on the  d i s t r i b u t i o n  
header. The boundaries of t he  calculat ion a r e  represented by the  dashed l i n e s  
shown i n  Figure 10. The loca t ion  of t h e  edge of t h e  f u e l  region i s  indica ted  
by the  v e r t i c a l  s o l i d  l i ne .  The rectangular d i s t r i b u t i o n  system i s  a l s o  ind i -  
cated. The four  t r ave r ses  A, By C y  and D represent  r a d i a l  and axial p r o f i l e s  
through the  d i s t r i b u t i o n  header and away from it which w i l l  i nd i ca t e  t h e  flux 
per turba t ion  caused by the  system. 

While it appears t h a t  the  l o c a l  power w i l l  not be per- 

Figure 11 represents  a r a d i a l  thermal f lux p r o f i l e  i n  t h e  neighborhood 

Here again, t h e  per tur -  
of t h e  d i s t r i b u t i o n  system. Traverse A passes through t h e  gas plenum, 
t r a v e r s e  B through a pos i t ion  4 centimeters removed. 
ba t ion  i n  t h e  f u e l  region of t he  core i s  minor. 
t r ave r ses  through t h e  f u e l  region and through t h e  moderator and d i s t r i b u t i o n  
system. 
due t o  our d i s t r i b u t i o n  system, while t h e  lower t r ave r se  ( C )  represents  t h e  
per turba t ion  i n  t he  f u e l  region. 

Figure 1 2  compares axial 

The upper t r ave r se  (D)  represents axial f l u x  per turba t ion  p r o f i l e  

I n  summary, w e  show the  calculated r e a c t i v i t y  worth curve f o r  a helium-3 
gas cont ro l  system (Fig. 13). This curve includes t h e  e f f e c t s  of d i f f e r e n t  
temperatures i n  t h e  gas a t  d i f f e ren t  operating pressures.  The hold down l e v e l  
corresponds t o  approximately 90 psia,and hot  c r i t i c a l  t o  approximately 60 p s i a  
within t h e  cont ro l  element. 

W e  f e e l  t h a t  t h e  concept of a helium-3 gaseous cont ro l  system o f f e r s  
d e f i n i t e  advantages for high performance r eac to r  cores. The major advantage 
l i e s  i n  the  f a c t  t h a t  r eac to r  control can be maintained without per turbing a 
des i red  power shape. Furthermore, t h i s  concept, as proposed, weighs con- 
s iderably  l e s s  than a conventional system. Not only a r e  we using high cross-  
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s e c t i o n  low-density poison material, but t h e  valving system i s  l e s s  com- 
p lex  than a cont ro l  rod drive. 

Our study has shown t h a t  t h e  system i s  f e a s i b l e  i n  terms of pressure 
ranges, operating temperatures, element s i zes ,  and cont ro l  worths. Further- 
more, t h e  modes of operation can be established q u i t e  r ead i ly  and a r e  not 
very complex. We have es tab l i shed  t h a t  t h e  system has a s t a b l e  configura- 
t i o n  under steady s ta te  conditions which i s  only sl-ightly d i f f e r e n t  i n  con- 
t r o l  worth from a constant dens i ty  poison. 

I n i t i a l  i nves t iga t ion  has indicated t h a t  a helium-3 gaseous cont ro l  
concept i s  f e a s i b l e  i n  a water-moderated space nuclear r eac to r  and merits 
f u r t h e r  inves t iga t ion .  
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REFERENCE CONTROL SYSTEM SCHEMATIC 
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CONTROL SYSTEM DESIGN REQUIREMENTS 
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I. R E A C T I V I T Y  

A .  W O R T H  OF H E L I U M - 3  H E L D  I N  THE R E A C T O R  ( A k l k )  

1. A T  C O L D  S H U T D O W N  1 6 . 1 9  

2. A T  HOT C L E A N  C R I T I C A L  10.79  

3 .  A T  X E N O N  O V E R R I D E  0.4% 0 . 5 9  

6 .  A D D I T I O N  A N D  R E M O V A L  

1. M A X I M U M  R E M O V A L  R A T E  = 601SEC 

2. M I N I M U M  S C R A M  R A T E  = 1 0 9 I S E C  
3. I N C R E M E N T S  OF F I N E  C O N T R O L  - k112C 

C. M A X I M U M  A L L O W A B L E  V A R I A T I O N  O F  P O I S O N  M A S S  

CS-41118 
BETWEEN ELEMENTS = ~ 5 %  

Figure SA 

CONTROL SYSTEM DESIGN REQUIREMENTS 

11. E N V I R O N M E N T A L  
A .  P R E S S U R E  O U T S I D E  C O N T R O L  S Y S T E M  

1. I N  C O R E  ( M O D E R A T O R  R E G I O N )  
( a )  N O R M A L  O P E R A T I O N  = 6 0 0  P S l A  
( b )  S H U T D O W N  = 100 P S l A  

2. O U T S I D E  O F  R E A C T O R  C O R E  = 0 P S l A  
6 .  W A T E R  C O O L A N T  

1. 
2. F L O W  PER L A T T I C E  C E L L  = 30  G P M  

I N L E T  T E M P  = 6 5 6 '  R 

C.  
D. A V E R A G E  H E A T I N G  R A T E S  A T  100% P O W E R  

A L U M I N U M  T E M P  L I M I T  = 7 6 0 '  R 

1. I N  W A T E R  = 1 5 0  W l C C  
2. I N  A L U M I N U M  = 360 W l C C  

E .  R E A C T O R  O P E R A T I N G  T I M E  = 1 H R  
F .  N U M B E R  OF R E A C T O R  S T A R T U P S  = 5 

CS-41119 
Figure 5B 
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H E X A G O N A L  C O N T R O L  E L E M E N T  C O N C E P T  

Figure 6 

EFFECT OF VARIABLE GAS DENSITY ON AXIAL FLUX PROFILE 
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HELIUM-3 DENSITY DISTRIBUTION IN CONTROL ELEMENT 
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Figure 8 

THERMAL FLUX PROFILES IN "REVERSE-CELLf' CALCULATIONS 

-m , - W I T H - P O I S O N  C A S E  

U'  

I 

:He3 A N N U L U S  

W A T E R  W A T E R  I F U E L  t 
I I \ I  I I I I I 

0 . 5  1 . 0  
F R A C T I O N  O F  C E L L  R A D I U S ,  R I R ,  

C 5-41125 
Figure 9 



, 

GEOMETRY OF DISTRIBUTION SYSTEM 
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Figure 10 

RADIAL FLUX PROFILE NEAR DISTRIBUTION SYSTEM 
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Figure 11 



AXIAL FLUX PROFILE NEAR DISTRIBUTION SYSTEM 
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Figure 12 

TYPICAL REACTIVITY CURVE FOR HELIUM-3 SYSTEM 
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